Overlay of projected marten distributions, 2076-2095, 800 m resolution
Dataset Identification:
Resource Abstract:
Agreement in predicted marten year-round distribution derived from future (2076-2095) climate projections and vegetation simulations
using 3 GCMs (Hadley CM3 (Johns et al. 2003), MIROC (Hasumi and Emori 2004), and CSIRO Mk3 (Gordon 2002)) under the A2 emissions
scenario (Naki?enovi? et al. 2000). <br /> <br /> Projected marten distribution was created with Maxent (Phillips et al. 2006)
using marten detections (N = 302, spanning 1990 2011) and eight predictor variables: mean potential evapotranspiration, mean
annual precipitation, mean fraction of vegetation carbon burned, mean forest carbon (g C m2), mean fraction of vegetation
carbon in forest, understory index (fraction of grass vegetation carbon in forest), average maximum tree LAI, and modal vegetation
class. <br /> <br /> Future climate drivers were generated using statistical downscaling (simple delta method) of general
circulation model projections, under the A2 emission scenario (Naki?enovi? et al. 2000). The deltas (differences for temperatures
and ratios for precipitation) were used to modify PRISM 800m historical baseline (Daly et al. 2008). Vegetation variables
were simulated with MC1 dynamic global vegetation model (Bachelet et al. 2001). This data layer was generated as part
of a pilot project to apply and evaluate the Yale Framework (Yale Science Panel for Integrating Climate Adaptation and Landscape
Conservation Planning). <br /> <br /> Grid value indicates number of projections with predicted probability of marten occurrence
>= 0.5. <br /> <br /> Bachelet D., R.P. Neilson, J.M. Lenihan, and R.J. Drapek. 2001. Climate change effects on vegetation
distribution and carbon budget in the U.S. Ecosystems 4:164-185. <br /> <br /> Daly, C., M. Halbleib, J.I. Smith, W.P. Gibson,
M.K. Doggett, G.H. Taylor, J. Curtis, and P.A. Pasteris. 2008. Physiographically-sensitive mapping of temperature and precipitation
across the conterminous United States. International Journal of Climatology 28: 2031-2064. <br /> <br /> Gordon, H.B., L.D.
Rotstayn, J.L. McGregor, M.R. Dix, E.A. Kowalczyk, S.P. OFarrell, L.J. Waterman, A.C. Hirst, S.G. Wilson, M.A. Collier, I.G.
Watterson, and T.I. Elliott. 2002. The CSIRO Mk3 climate system model. CSIRO Atmos. Res. Tech. Pap., 60, 130 pp., Commonwealth
Scientific and Industrial Research Organisation, Aspendale, Victoria, Australia. <br /> <br /> Hasumi, H., and S. Emori, Eds.
2004. K?1 Coupled GCM (MIROC) Description, K?1 Tech. Rep. 1, 34 pp., Cent. for Clim. Syst. Res., Tokyo, Japan. Available online
at http://www.ccsr.u?tokyo.ac.jp/kyosei/hasumi/MIROC/tech?repo.pdf <br /> <br /> Johns, T.C., J.M. Gregory, W.J. Ingram, C.E.
Johnson, A. Jones, J.A. Lowe, J.F.B. Mitchell, D.L. Roberts, D.M.H. Sexton, D.S. Stevenson, S.F.B. Tett, and M.J. Woodage.
2003. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. ClimDyn
20: 583-612. <br /> Naki?enovi?, N. and R. Swart, Eds. 2000. Emissions Scenarios: A Special Report of Working Group
III of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, U. K. <br /> <br /> Phillips, S.J.,
R.P. Anderson, and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling
190: 231-259.
Citation
Title Overlay of projected marten distributions, 2076-2095, 800 m resolution