Dataset Identification:

Resource Abstract:
description: Cave-limited species display patchy and restricted distributions, but are challenging to study in-situ because of the difficulty of sampling. It is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management goals can be more easily obtained. These GIS data represent the input and results of a spatial statistical model used to examine the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative (LCC) in the eastern United States (Illinois to Virginia, and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. The models successfully predicted the presence of a group greater than 65 percent of the time (mean=88 percent) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas.; abstract: Cave-limited species display patchy and restricted distributions, but are challenging to study in-situ because of the difficulty of sampling. It is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management goals can be more easily obtained. These GIS data represent the input and results of a spatial statistical model used to examine the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative (LCC) in the eastern United States (Illinois to Virginia, and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. The models successfully predicted the presence of a group greater than 65 percent of the time (mean=88 percent) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas.
Citation
Title GIS data for predicting the occurrence of cave-inhabiting fauna based on features of the Earth surface environment in the Appalachian Landscape Conservation Cooperative (LCC) Region.
creation  Date   2018-06-08T15:36:51.073625
Resource language:
Processing environment:
Back to top:
Digital Transfer Options
Linkage for online resource
name Dublin Core references URL
URL:http://dx.doi.org/10.5066/F76D5R2H
protocol WWW:LINK-1.0-http--link
link function information
Description URL provided in Dublin Core references element.
Linkage for online resource
name Dublin Core references URL
URL:http://dx.doi.org/10.5066/F76D5R2H
protocol WWW:LINK-1.0-http--link
link function information
Description URL provided in Dublin Core references element.
Linkage for online resource
name Dublin Core references URL
URL:http://dx.doi.org/10.1371/journal.pone.0160408
protocol WWW:LINK-1.0-http--link
link function information
Description URL provided in Dublin Core references element.
Metadata data stamp:  2018-08-06T20:57:34Z
Resource Maintenance Information
maintenance or update frequency:
notes: This metadata record was generated by an xslt transformation from a dc metadata record; Transform by Stephen M. Richard, based on a transform by Damian Ulbricht. Run on 2018-08-06T20:57:34Z
Metadata contact - pointOfContact
organisation Name  CINERGI Metadata catalog
Contact information
Address
electronic Mail Addresscinergi@sdsc.edu
Metadata language  eng
Metadata character set encoding:   utf8
Metadata standard for this record:  ISO 19139 Geographic Information - Metadata - Implementation Specification
standard version:  2007
Metadata record identifier:  urn:dciso:metadataabout:bb16df1b-f375-40ce-ac84-6f2b0437cdc1

Metadata record format is ISO19139 XML (MD_Metadata)