Dataset Identification:

Resource Abstract:
description: This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects location and elevation (X, Y, Z) data to a set standard for the entire state of Iowa. LIDAR is defined as an airborne laser system, flown aboard rotary or fixed-wing aircraft, that is used to acquire x, y, and z coordinates of terrain and terrain features that are both manmade and naturally occurring. LIDAR systems consist of a light-emitting scanning laser, an airborne Global Positioning System (GPS) with attendant GPS base station(s), and an Inertial Measuring Unit (IMU). The laser scanning system measures ranges from the scanning laser to terrain surfaces by measuring the time it takes for the emitted light (LIDAR return) to reach the earth's surface and reflect back to the onboard LIDAR detector. The airborne GPS system ascertains the in-flight three-dimensional position of the sensor, and the IMU delivers precise information about the attitude of the sensor. The LIDAR system incorporates data from these three subsystems to produce a large cloud of points on the land surface whose X, Y, and Z coordinates are known within the specified accuracy. This collection consists of ASCII files of bare earth elevations and intensity (x,y,z,i) and, LAS (version 1.0 lidar data interchange standard) binary files that include all 1st and last returns, intensity and bare earth classification.; abstract: This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects location and elevation (X, Y, Z) data to a set standard for the entire state of Iowa. LIDAR is defined as an airborne laser system, flown aboard rotary or fixed-wing aircraft, that is used to acquire x, y, and z coordinates of terrain and terrain features that are both manmade and naturally occurring. LIDAR systems consist of a light-emitting scanning laser, an airborne Global Positioning System (GPS) with attendant GPS base station(s), and an Inertial Measuring Unit (IMU). The laser scanning system measures ranges from the scanning laser to terrain surfaces by measuring the time it takes for the emitted light (LIDAR return) to reach the earth's surface and reflect back to the onboard LIDAR detector. The airborne GPS system ascertains the in-flight three-dimensional position of the sensor, and the IMU delivers precise information about the attitude of the sensor. The LIDAR system incorporates data from these three subsystems to produce a large cloud of points on the land surface whose X, Y, and Z coordinates are known within the specified accuracy. This collection consists of ASCII files of bare earth elevations and intensity (x,y,z,i) and, LAS (version 1.0 lidar data interchange standard) binary files that include all 1st and last returns, intensity and bare earth classification.
Citation
Title Iowa LiDAR Mapping Project.
creation  Date   2017-11-14T12:54:19.233413
Resource language:
Processing environment:
Back to top:
Digital Transfer Options
Linkage for online resource
name Dublin Core references URL
URL:http://<http://geotree2.geog.uni.edu/lidar/>
protocol WWW:LINK-1.0-http--link
link function information
Description URL provided in Dublin Core references element.
Linkage for online resource
name Dublin Core references URL
URL:http://geotree2.geog.uni.edu/lidar/
protocol WWW:LINK-1.0-http--link
link function information
Description URL provided in Dublin Core references element.
Metadata data stamp:  2018-08-06T19:40:47Z
Resource Maintenance Information
maintenance or update frequency:
notes: This metadata record was generated by an xslt transformation from a dc metadata record; Transform by Stephen M. Richard, based on a transform by Damian Ulbricht. Run on 2018-08-06T19:40:47Z
Metadata contact - pointOfContact
organisation Name  CINERGI Metadata catalog
Contact information
Address
electronic Mail Addresscinergi@sdsc.edu
Metadata language  eng
Metadata character set encoding:   utf8
Metadata standard for this record:  ISO 19139 Geographic Information - Metadata - Implementation Specification
standard version:  2007
Metadata record identifier:  urn:dciso:metadataabout:4550e67f-1448-4c39-8cf3-4d08313effb4

Metadata record format is ISO19139 XML (MD_Metadata)