Dataset Identification:

Resource Abstract:
description: <p><a href="https://snap.brc.tamus.edu/Home/Index">SNAP (Soil Nutrient Assessment Program)</a>, a component of the <a href="https://soilandwaterhub.brc.tamus.edu/Home/Index">USDA/ARS Soil and Water Hub</a>, is a web-based tool that provides an estimate of plant-available nutrients that the soil naturally provides.</p> <p>Soil test fertilizer recommendations have long been predicated upon response curves generated from fertility trials across the country. These response curves have been compared to relative yield which provide probability ranges for a response to varying fertilizer inputs. Category responses include very low, low, adequate, high or very high inversely related to probability of a response to various inputs of nitrogen, phosphate, and potassium (N, P, and K).</p> <p>New soil test methods, increases in computing power and access to the internet have enabled development of an interactive tool that is based on plant available NPK from both the inorganic fraction and organic pool of the soil. The new methods provide an estimate of plant available nutrients that the soil naturally provides, which has largely been ignored for decades.</p> <p>Since we have access to large datasets we can calculate the amounts of NPK required growing crops in lbs NPK per bu of the desired crop. For example, it requires 100 lbs of N, 50 lbs P2O5, 50 lbs K2O to grow 100 bu corn. These are the base numbers from which we subtract the soil test data after converting from the analytical ppm to Lbs P2O5 or lbs K2O. This is a straight subtraction. It also eliminates the need for "calibration data" since the soil tests reflect the soils inherent fertility. Using the example above, of 100, 50, 50 of N, P, and K required and soil test results of 25, 35, 45 then the fertilizer needed would be 75 N, 15 P2O5 and 5 K2O. This is a simple approach that doesn't get lost in relative yield-crop response curves that have been used for decades from differing geographical areas.</p> <p>This tool will include current fertilizer prices, soil test inputs, and crop based county averages for the last 15 years that will predict the chances of making the yield goal the user inputs compared to historical yield data for their county and calculate the fertilizer cost with and without soil testing compared to user input yield goal and county average. This tool will allow the user via the internet to produce a more straightforward approach to realistically planning next year's fertilizer inputs and associated cost. It will also show the benefits of soil testing for increased fertilizer efficiency and reduced environmental impact.</p>; abstract: <p><a href="https://snap.brc.tamus.edu/Home/Index">SNAP (Soil Nutrient Assessment Program)</a>, a component of the <a href="https://soilandwaterhub.brc.tamus.edu/Home/Index">USDA/ARS Soil and Water Hub</a>, is a web-based tool that provides an estimate of plant-available nutrients that the soil naturally provides.</p> <p>Soil test fertilizer recommendations have long been predicated upon response curves generated from fertility trials across the country. These response curves have been compared to relative yield which provide probability ranges for a response to varying fertilizer inputs. Category responses include very low, low, adequate, high or very high inversely related to probability of a response to various inputs of nitrogen, phosphate, and potassium (N, P, and K).</p> <p>New soil test methods, increases in computing power and access to the internet have enabled development of an interactive tool that is based on plant available NPK from both the inorganic fraction and organic pool of the soil. The new methods provide an estimate of plant available nutrients that the soil naturally provides, which has largely been ignored for decades.</p> <p>Since we have access to large datasets we can calculate the amounts of NPK required growing crops in lbs NPK per bu of the desired crop. For example, it requires 100 lbs of N, 50 lbs P2O5, 50 lbs K2O to grow 100 bu corn. These are the base numbers from which we subtract the soil test data after converting from the analytical ppm to Lbs P2O5 or lbs K2O. This is a straight subtraction. It also eliminates the need for "calibration data" since the soil tests reflect the soils inherent fertility. Using the example above, of 100, 50, 50 of N, P, and K required and soil test results of 25, 35, 45 then the fertilizer needed would be 75 N, 15 P2O5 and 5 K2O. This is a simple approach that doesn't get lost in relative yield-crop response curves that have been used for decades from differing geographical areas.</p> <p>This tool will include current fertilizer prices, soil test inputs, and crop based county averages for the last 15 years that will predict the chances of making the yield goal the user inputs compared to historical yield data for their county and calculate the fertilizer cost with and without soil testing compared to user input yield goal and county average. This tool will allow the user via the internet to produce a more straightforward approach to realistically planning next year's fertilizer inputs and associated cost. It will also show the benefits of soil testing for increased fertilizer efficiency and reduced environmental impact.</p>
Citation
Title SNAP - Soil Nutrient Assessment Program.
creation  Date   2018-06-08T21:35:18.646522
Resource language:
Processing environment:
Back to top:
Digital Transfer Options
Linkage for online resource
name Dublin Core references URL
URL:https://snap.brc.tamus.edu/Home/Index
protocol WWW:LINK-1.0-http--link
link function information
Description URL provided in Dublin Core references element.
Metadata data stamp:  2018-08-06T22:32:34Z
Resource Maintenance Information
maintenance or update frequency:
notes: This metadata record was generated by an xslt transformation from a dc metadata record; Transform by Stephen M. Richard, based on a transform by Damian Ulbricht. Run on 2018-08-06T22:32:34Z
Metadata contact - pointOfContact
organisation Name  CINERGI Metadata catalog
Contact information
Address
electronic Mail Addresscinergi@sdsc.edu
Metadata language  eng
Metadata character set encoding:   utf8
Metadata standard for this record:  ISO 19139 Geographic Information - Metadata - Implementation Specification
standard version:  2007
Metadata record identifier:  urn:dciso:metadataabout:7f1cab4a-8933-4d30-98f0-aa27f79e5163

Metadata record format is ISO19139 XML (MD_Metadata)