Dataset Identification:

Resource Abstract:
description: LANDFIRE disturbance data are developed to provide temporal and spatial information related to landscape change for determining vegetation transitions over time and for making subsequent updates to LANDFIRE vegetation, fuel and other data. Disturbance data include attributes associated with disturbance year, type, and severity. These data are developed through use of Landsat satellite imagery, local agency derived disturbance polygons, and other ancillary data. DATA SUMMARY: The disturbance data are developed through a multistep process. Inputs to this process include; Landsat imagery and derived NBR (normalized burn ratio) data; polygon data developed by local agencies for the LANDFIRE Refresh effort; fire data obtained from MTBS (Monitoring Trends in Burn Severity), BARC (Burned Area Reflectance Classification,), and RAVG (Rapid Assessment of Vegetation Condition after Wildfire) fire mapping efforts; and PAD (Protected Area Database) data.Refresh Event polygon data are provided to LANDFIRE by various local, regional, and national agencies and organizations. Disturbance type and year information is included as attributes for each polygon and transferred to the disturbance grids. Severity is determined by using dNBR (difference Normalized Burn Ratio) data classified into high, medium, and low severity levels based on a statistical comparison with the MTBS, BARC, and RAVG fire severity. Vegetation Tracker (Huang, et. al. 2008) algorithms are used to identify disturbances outside of Refresh Events. VCT data are developed for each year identifying disturbed areas as well as severity. Since disturbance type (i.e. causality) is not determined in the VCT process, a spatial analysis is done comparing the VCT output to buffered (1kilometer) Refresh Events and PAD GAP Status information (land use characteristics). While not providing a precise type of disturbance, this analysis provides information useful for narrowing down the types of disturbance that could or could not typically occur.Each zone has ten disturbance grids, one for each year 1999 to 2008. Each grid is attributed with year, disturbance type (if known, otherwise a description of possible types), severity, and the data sources used to create the data.; abstract: LANDFIRE disturbance data are developed to provide temporal and spatial information related to landscape change for determining vegetation transitions over time and for making subsequent updates to LANDFIRE vegetation, fuel and other data. Disturbance data include attributes associated with disturbance year, type, and severity. These data are developed through use of Landsat satellite imagery, local agency derived disturbance polygons, and other ancillary data. DATA SUMMARY: The disturbance data are developed through a multistep process. Inputs to this process include; Landsat imagery and derived NBR (normalized burn ratio) data; polygon data developed by local agencies for the LANDFIRE Refresh effort; fire data obtained from MTBS (Monitoring Trends in Burn Severity), BARC (Burned Area Reflectance Classification,), and RAVG (Rapid Assessment of Vegetation Condition after Wildfire) fire mapping efforts; and PAD (Protected Area Database) data.Refresh Event polygon data are provided to LANDFIRE by various local, regional, and national agencies and organizations. Disturbance type and year information is included as attributes for each polygon and transferred to the disturbance grids. Severity is determined by using dNBR (difference Normalized Burn Ratio) data classified into high, medium, and low severity levels based on a statistical comparison with the MTBS, BARC, and RAVG fire severity. Vegetation Tracker (Huang, et. al. 2008) algorithms are used to identify disturbances outside of Refresh Events. VCT data are developed for each year identifying disturbed areas as well as severity. Since disturbance type (i.e. causality) is not determined in the VCT process, a spatial analysis is done comparing the VCT output to buffered (1kilometer) Refresh Events and PAD GAP Status information (land use characteristics). While not providing a precise type of disturbance, this analysis provides information useful for narrowing down the types of disturbance that could or could not typically occur.Each zone has ten disturbance grids, one for each year 1999 to 2008. Each grid is attributed with year, disturbance type (if known, otherwise a description of possible types), severity, and the data sources used to create the data.
Citation
Title BLM REA COP 2010 LANDFIRE - Disturbance (2004).
creation  Date   2018-05-19T22:52:37.396042
Resource language:
Processing environment:
Back to top:
Digital Transfer Options
Linkage for online resource
name Dublin Core references URL
URL:https://landscape.blm.gov/COP_2010_layerpackages/COP_LANDFIRE_Disturbance_2004.lpk
protocol WWW:LINK-1.0-http--link
link function information
Description URL provided in Dublin Core references element.
Linkage for online resource
name Dublin Core references URL
URL:https://landscape.blm.gov/COP_2010_layerpackages/COP_LANDFIRE_Disturbance_2004.lpk
protocol WWW:LINK-1.0-http--link
link function information
Description URL provided in Dublin Core references element.
Metadata data stamp:  2018-08-07T00:37:42Z
Resource Maintenance Information
maintenance or update frequency:
notes: This metadata record was generated by an xslt transformation from a dc metadata record; Transform by Stephen M. Richard, based on a transform by Damian Ulbricht. Run on 2018-08-07T00:37:42Z
Metadata contact - pointOfContact
organisation Name  CINERGI Metadata catalog
Contact information
Address
electronic Mail Addresscinergi@sdsc.edu
Metadata language  eng
Metadata character set encoding:   utf8
Metadata standard for this record:  ISO 19139 Geographic Information - Metadata - Implementation Specification
standard version:  2007
Metadata record identifier:  urn:dciso:metadataabout:556ff42b-1fcf-4db9-8058-aab1c1f492eb

Metadata record format is ISO19139 XML (MD_Metadata)