Dataset Identification:

Resource Abstract:
description: The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the dismopackage (Hijmans et al. 2011). Model evaluation was carried out using the PresenceAbsencepackage in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband tifformat with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].; abstract: The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the dismopackage (Hijmans et al. 2011). Model evaluation was carried out using the PresenceAbsencepackage in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband tifformat with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].
Citation
Title Coast Horned Lizard Habitat Model for NSNF Connectivity - CDFW [ds1035].
creation  Date   2018-01-02T20:59:02.178268
Resource language:
Processing environment:
Back to top:
Digital Transfer Options
Linkage for online resource
name Dublin Core references URL
URL:http://bios.dfg.ca.gov/
protocol WWW:LINK-1.0-http--link
link function information
Description URL provided in Dublin Core references element.
Metadata data stamp:  2018-08-06T21:05:07Z
Resource Maintenance Information
maintenance or update frequency:
notes: This metadata record was generated by an xslt transformation from a dc metadata record; Transform by Stephen M. Richard, based on a transform by Damian Ulbricht. Run on 2018-08-06T21:05:07Z
Metadata contact - pointOfContact
organisation Name  CINERGI Metadata catalog
Contact information
Address
electronic Mail Addresscinergi@sdsc.edu
Metadata language  eng
Metadata character set encoding:   utf8
Metadata standard for this record:  ISO 19139 Geographic Information - Metadata - Implementation Specification
standard version:  2007
Metadata record identifier:  urn:dciso:metadataabout:2b0078f4-6687-4426-87cb-f52cc32f77ca

Metadata record format is ISO19139 XML (MD_Metadata)